skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mu, Xiaosheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Building on Pomatto, Strack, and Tamuz (2020), we identify a tight condition for when background risk can induce first-order stochastic dominance. Using this condition, we show that under plausible levels of background risk, no theory of choice under risk can simultaneously satisfy the following three economic postulates: (i) decision-makers are risk averse over small gambles, (ii) their preferences respect stochastic dominance, and (iii) they account for background risk. This impossibility result applies to expected utility theory, prospect theory, rank-dependent utility, and many other models. (JEL D81, D91) 
    more » « less
  2. The expectation is an example of a descriptive statistic that is monotone with respect to stochastic dominance, and additive for sums of independent random variables. We provide a complete characterization of such statistics, and explore a number of applications to models of individual and group decision‐making. These include a representation of stationary monotone time preferences, extending the work of Fishburn and Rubinstein (1982) to time lotteries. This extension offers a new perspective on risk attitudes toward time, as well as on the aggregation of multiple discount factors. We also offer a novel class of non‐expected utility preferences over gambles which satisfy invariance to background risk as well as betweenness, but are versatile enough to capture mixed risk attitudes. 
    more » « less
  3. An agent has access to multiple information sources, each modeled as a Brownian motion whose drift provides information about a different component of an unknown Gaussian state. Information is acquired continuously—where the agent chooses both which sources to sample from, and also how to allocate attention across them—until an endogenously chosen time, at which point a decision is taken. We demonstrate conditions on the agent's prior belief under which it is possible to exactly characterize the optimal information acquisition strategy. We then apply this characterization to derive new results regarding: (1) endogenous information acquisition for binary choice, (2) the dynamic consequences of attention manipulation, and (3) strategic information provision by biased news sources. 
    more » « less
  4. null (Ed.)
    We study repeated independent Blackwell experiments; standard examples include drawing multiple samples from a population, or performing a measurement in different locations. In the baseline setting of a binary state of nature, we compare experiments in terms of their informativeness in large samples. Addressing a question due to Blackwell (1951), we show that generically an experiment is more informative than another in large samples if and only if it has higher Rényi divergences. We apply our analysis to the problem of measuring the degree of dissimilarity between distributions by means of divergences. A useful property of Rényi divergences is their additivity with respect to product distributions. Our characterization of Blackwell dominance in large samples implies that every additive divergence that satisfies the data processing inequality is an integral of Rényi divergences. 
    more » « less
  5. null (Ed.)
    Abstract We develop a model of social learning from complementary information: short-lived agents sequentially choose from a large set of flexibly correlated information sources for prediction of an unknown state, and information is passed down across periods. Will the community collectively acquire the best kinds of information? Long-run outcomes fall into one of two cases: (i) efficient information aggregation, where the community eventually learns as fast as possible; (ii) “learning traps,” where the community gets stuck observing suboptimal sources and information aggregation is inefficient. Our main results identify a simple property of the underlying informational complementarities that determines which occurs. In both regimes, we characterize which sources are observed in the long run and how often. 
    more » « less